Density matrix reconstruction using non-negative matrix product states

نویسندگان

چکیده

Quantum state tomography is a key technique for quantum information processing but challenging due to the exponential growth of its complexity with system size. In this work we propose an algorithm which iteratively finds best non-negative matrix product approximation based on set measurement outcomes whose size does not necessarily grow exponentially. Compared method neural network states, our scheme utilizes so-called tensor train representation that allows straightforward recovery unknown density in operator form. As applications, effectiveness numerically demonstrated reconstruct ground XXZ spin chain under depolarizing noise.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From density-matrix renormalization group to matrix product states

In this paper we give an introduction to the numerical density matrix renormalization group (DMRG) algorithm, from the perspective of the more general matrix product state (MPS) formulation. We cover in detail the differences between the original DMRG formulation and the MPS approach, demonstrating the additional flexibility that arises from constructing both the wavefunction and the Hamiltonia...

متن کامل

Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In t...

متن کامل

S matrix from matrix product states.

We use the matrix product state formalism to construct stationary scattering states of elementary excitations in generic one-dimensional quantum lattice systems. Our method is applied to the spin-1 Heisenberg antiferromagnet, for which we calculate the full magnon-magnon S matrix for arbitrary momenta and spin, the two-particle contribution to the spectral function, and higher order corrections...

متن کامل

Stochastic matrix product states.

The concept of stochastic matrix product states is introduced and a natural form for the states is derived. This allows us to define the analogue of Schmidt coefficients for steady states of nonequilibrium stochastic processes. We discuss a new measure for correlations which is analogous to entanglement entropy, the entropy cost S(C), and show that this measure quantifies the bond dimension nee...

متن کامل

Unsupervised Generative Modeling Using Matrix Product States

Generative modeling, which learns joint probability distribution from training data and generates samples according to it, is an important task in machine learning and artificial intelligence. Inspired by probabilistic interpretation of quantum physics, we propose a generative model using matrix product states, which is a tensor network originally proposed for describing (particularly one-dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2022

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physreva.106.042435